AS UNIT BY1

Question

Answers/Explanatory Notes

1. (a)

Structure	Plant cell	Animal Cell
Centrioles	X	I
Mitochondria	$/$	$/$
Chloroplasts	$/$	X

(1 for each column)
(b) (i) Correct diagram showing double membrane with Inner membrane folded.

Any 2 labels from matrix, crista, intermembrane space, double membrane, stalked particles, DNA, ribosomes.
(ii) Aerobic respiration / ATP production (not: respiration)
(iii) Muscle cell / liver cell/sperm/pancreas/epithelial cell from small intestine/neurone/companion cell.
(iv) High requirement for energy for contraction/sperm movement / for chemical activity/high metabolic activity/active transport. (not: exercise)
2. (a) A - interphase (not: resting phase).

B - mitosis (not: cell division).
C - prophase.
(b) (i) Metaphase - both chromosomes on equator, chromatids either side.

Anaphase - 4 V or U shaped, centromere pointing towards centrioles.
(ii) Nucleotide synthesis, replication of DNA, replication of organelles, protein synthesis, growth, synthesis ATP.AVP. (Any 2)

Question

3. (a) (i)

Pentose shown as pentagon and labelled, sugar/ribose/deoxyribose Phosphate on C5 and labelled, phosphate/phosphoric acid Base on C1 and labelled, (nitrogenous) base/named base
(ii) The pentose is ribose in RNA deoxyribose in DNA; one less oxygen atom than sugar in RNA)) the base thymine is only found in DNA / uracil in RNA. (not: ref. helix/strands/uracil and thymine) Comparison needed
(b) (i) (Alternating) sugar / pentose or deoxyribose and phosphate.
(ii) Adenine with thymine.

Cytosine with guanine.
(not: abbreviations) Correct spelling thymine/cytosine.
(iii) Hydrogen. (not: H)
Question
4. (a) (i) Fluid Mosaic.
(ii) Head labelled hydrophilic AND tail labelled hydrophobic.
(b) Secondary structure is folding of polypeptide chain / ref. to α helix or β pleated sheet;
held by hydrogen bonds;
tertiary is folding of α helix or secondary structure / correct reference to specific 3D shape;
held by bonds between R groups / name at least 2 from
covalent, disulphide, ionic, salt bridges, hydrophobic, hydrogen, van der Waals.
(Any 4)
(c) (i) Charged groups will associate with (hydrophilic) heads of lipids / layer; / hydrophobic inside hydrophilic outside.

Uncharged groups will associate with (hydrophobic) tails.
(ii) Will associate with heads only / attach to outside or inside of the membrane / correct use of extrinsic or would be surface protein. (not: would not be in the membrane unqual.)

Question

5.

(a)
A. Cell / plasma membrane
B. Cell wall
C. Cytoplasm
D. Tonoplast / vacuolar membrane
E. Vacuole
F. Plasmodesma(ta)
(2 for all correct 1 if 1 mistake)
(b) Diffusion; osmosis; active transport; facilitated diffusion. (Any 2) (not: apoplast/ symplast/ through F)
(c) Cytoplasm / vacuole shrinks / gaps between wall and cytoplasm. (not: plasmolysis/cell shrinks)
(d) (i) The difference between the free energy of water molecules in a system and the free energy of molecules in pure water / the tendency for water molecules to leave / move out of a system. (not: ref. to equation)
(ii) Zero.
(iii) $\mathrm{P}-700 \mathrm{kPa}$.

Q-600 kPa.
(iv) From Q to $\mathrm{P} /$ into P (not: out of Q).
(independent mark from (iii))

Question

6. (a) (i) Showing, 1 O and 2 H s removed.

Elimination of water, stated.
Molecules joined by oxygen bridge.
(ii) Maltose (not: disaccharide).
(iii) Water.
(iv) Condensation.
(b) (i) Joining together sub units / monomers /repeating units/ residues (to make a larger molecule)
(not: joining molecules into a chain/ specific example)
(ii) Correct axes - iron sulphate concentrate on horizontal, both labelled and units given.

Suitable scale using at least half available space;
plots visible and clear line correct shape.
(not: extrapolation/line of best fit)
(iii) 0.9 mM (allow: between 0.7 and 0.9 mM).
(iv) $60-5.2=54.8 / 60 \times 100=91.3(\%)$ (allow: 91)
(2 for correct answer 1 for correct working but wrong answer.)
(v) Inhibitor competes with substrate (to bind with active site);
inhibitor binds to/fits into active site;
with inhibitor bound substrate is unable to bind/less E-S complexes;
inhibitor same/complementary shape as substrate;
the greater the concentration of substrate the less inhibition / ra / owtte
(Any 3)
(vi) (Add iron sulphate to toothpaste / mouthwash / sugary drinks.) to prevent formation of plaque / tooth decay.

Question

7. (a) A. Enclosed by cell wall.
B. Presence of cell/plasma membrane.
photosynthetic membrane.
D. DNA in tangled nucleoid / single chromosome / loop (not if looks like plasmid)
E. Additional rings of DNA - plasmids / food reserve granules.
F. Infoldings of cell membranes - mesosome.
G. Ribosomes in cytoplasm.
H. Ribosomes (very) much larger in eukaryote/70S.
I. Prokaryote ($1-10 \mu \mathrm{~m}$), eukaryote ($10-100 \mu \mathrm{~m}$).
J. Cell wall of eukaryote made of cellulose/chitin and Prokaryote wall murein / peptidoglycan.
K. Mitochondria in eukaryotes and mesosomes in prokaryotes
L. Eukaryotes have nucleus / nuclear membrane / more genetic information.
M. (Containing several paired) chromosomes / linear Chromosomes/DNA.

N Eukaryote compartmentalised by membranes / contains organelles or 2 examples.
O. Eukaryote chromosomes have protein / histones
(half marks max. if pro and eu wrong way round or no diagram.)
Diagram 5 max, comparison 6 max. If wrong diagram (i.e. any eukaryote features) no marks but allow consequential error i.e. prokaryote and eukaryote comparison reversed.

Question

(b) A. Enzyme molecules that are fixed / bound /

Trapped (not: immobilised/do not move)
B. to an inert Matrix/alginate bead.
C. They are more stable at higher temperatures (therefore reaction rates may be faster by using higher temps.)
D. They can tolerate wider range of pH .
E. They are more easily recovered for re-use/separated from product.
F. Several enzymes with different pH or temp. optima may be used at one time.
G. Reaction can be more easily controlled by adding or removing enzymes.
H. They are specific so can select one type of molecule in a mixture.
I. So can be used for rapid detection of biologically important molecules.
J. They can also accurately measure the quantities present / are sensitive.
K. Used in medical diagnosis / named condition eg diabetes.
L. And environmental monitoring,
M. Description of mechanism, some use a transducer to generate an electrical impulse that can be measured with a meter.
N. eg. Blood sugar meter as used by diabetics / AVP.
O. AVP/ easier to make pure product (not contaminated by enzyme.)

